AMS Knowledge portal of Amsterdam Institute for Advanced Metropolitan Solutions (AMS Institute)
Browse

File(s) not publicly available

Effective crowdsourced generation of training data for chatbots natural language understanding

conference contribution
posted on 2019-11-21, 09:28 authored by Alessandro BozzonAlessandro Bozzon, Rucha Bapat, Pavel Kucherbaev
Chatbots are text-based conversational agents. Natural Language Understanding (NLU) models are used to extract meaning and intention from user messages sent to chatbots. The user experience of chatbots largely depends on the performance of the NLU model, which itself largely depends on the initial dataset the model is trained with. The training data should cover the diversity of real user requests the chatbot will receive. Obtaining such data is a challenging task even for big corporations. We introduce a generic approach to generate training data with the help of crowd workers, we discuss the approach workflow and the design of crowdsourcing tasks assuring high quality. We evaluate the approach by running an experiment collecting data for 9 different intents. We use the collected training data to train a natural language understanding model. We analyse the performance of the model under different training set sizes for each intent. We provide recommendations on selecting an optimal confidence threshold for predicting intents, based on the cost model of incorrect and unknown predictions.

History

Affiliation

Web Information Systems group, Delft University of Technology

Language

  • En

Usage metrics

    Urban Data Science

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC